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A problem of the Stefan type which describes heat and mass transfer in a porous body with the double phase
transition liquid–ice–vapor has been formulated and solved.

Introduction. Investigations of heat and mass transfer processes with phase transitions in unsaturated porous
media are of importance for study of moisture motion in soils that is accompanied by complex physicochemical trans-
formations, for development of technological processes of drying of moist materials, including sublimation drying [1,
2], and for evaporative cooling. These investigations are based on either the A. V. Luikov theory of interconnected
heat and moisture transfer [1–4] in which the potentials of heat transfer (temperature) and moisture transfer (dependent
on the form of the bond of the moisture with the material) and corresponding transfer coefficients are introduced or
on the theory of multiphase filtration [5–7].

During the period of a decreasing rate of drying, deepening of the evaporation zone into the body is observed.
If the removal of a vapor is so intense that the capillary mechanism of transfer does not ensure the feed of a liquid
to dried pores, a front appears which moves into the body depth. In the general case, evaporation occurs not only on
the deepened surface but in a certain zone as well, which is attributed, in particular, to different forms of the bond of
moisture with the material. This is also true of sublimation drying [1, 2], i.e., drying of material in the frozen state.
Previous freezing or self-freezing (due to intense evaporation in vacuum) is used depending on the technology of dry-
ing.

One efficient heat-protection method which is widely used in space technology is evaporative cooling [8–11]
wherein a heat-transfer agent is evaporated (or sublimated) in a porous wall. In the case of a liquid heat-transfer agent
in a porous body, three zones of motion of the heat-transfer agent are present, as a rule: liquid, two-phase, and vapor
ones. A modification of porous cooling is the use of self-cooling in devices for which one operating condition is their
high erosion resistance. For example, it is possible to attain a decrease in the temperature of the heat-affected surface
by filling or impregnating porous tungsten with other material [4, 12, 13].

Different formulations of the problems of heat and mass transfer with phase transformations in capillary-po-
rous bodies are discussed, for example, in [1–5, 7, 8]. In particular, problems with a moving boundary of the evapo-
ration (sublimation) front deepened in a porous body, as a rule, are not concerned with the mass-transfer equation in
the evaporation zone. These problems are reduced to the Stefan problems. Their characteristic feature is that the tem-
perature on this boundary is generally a quantity which is variable with time and unknown prior to solution [4, 13].
Therefore, a correct mathematical formulation of such problems necessitates an additional relation connecting the ve-
locity of motion of the evaporation front and the front temperature. Analogous relations can be obtained in specific
cases for model porous media from consideration of the kinetics of mass transfer in individual capillaries [4] (one such
condition is used in this work). Actually, the temperature on the evaporation boundary is often considered to be a
quantity which is either known in advance or determined by solution of the problem with the use of the law of mo-
tion of the evaporation boundary found experimentally. For example, in [14] the exact solution of a problem of the
Stefan type on sublimation in a porous half-space has been obtained under the assumption that a certain constant sub-
limation temperature is specified on the moving front; in [15], the temperature of the sublimation front is taken to be
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unknown but constant. The solutions of the equations of vapor diffusion have also been obtained in both works. In
[16], unlike [14, 15], it is assumed that vapor flow in the dried region of a porous medium occurs as a result of the
presence of the gradients of both moisture concentration and pressure. It has been shown that in the case of sublima-
tion drying the Darcy law is the dominant driving force. It should be noted that this statement is most likely to be
true for vapor outflow in a nearly continuum regime.

Investigation of the mechanisms of the processes of sublimation of ice in different disperse systems has been
the focus of [17]. In this monograph, consideration has been given to the features of heat and mass transfer in subli-
mation in disperse systems, and the influence of the structure and physicochemical properties of rocks on the sublima-
tion process has been described. In [18], the features of the transfer processes in sublimation drying and in sublimation
of ice from a permeable plate into vacuum with different methods of heat supply have been presented and problems
related to sublimation kinetics have been discussed. Based on the experimental investigations performed, it has been
shown that three zones generally arise in the permeable plate in the process of sublimation of ice: zones of water, ice,
and steam. A change in the zone dimensions and the temperature fields is of a pulsating character; the pulsation cycle
can be subdivided into two periods of time: microbreak and rise of the sublimation surface (ice plug) and freezing and
descent of the sublimation surface. However the thickness of the ice layer is very small and the temperature of the
evaporation surface is close to 0oC for cermet plates with fine pores; pulsations are absent, in practice, and the subli-
mation (evaporation) surface occupies a constant position in the plate. In this work, we have also proposed a formu-
lation of the problem of heat and mass transfer with three phase regions.

The liquid–ice–vapor double phase transition also exists with operation of a sublimation heat exchanger in
outer space. This fact has been described in [19], where it is argued that when water is supplied to a sublimation gap
it penetrates into the pores and freezes on the boundary with vacuum, forming ice plugs which retard the water ejec-
tion; this is the basic advantage of the sublimator heat exchanger. Under the influence of heat incoming through the
partition, the sublimation gap, and the skeleton of the porous element from the cooled heat-transfer agent, sublimation
into vacuum occurs. As time passes, the ice–steam interphase moves more deeply into the porous body. The thickness
of the ice layer gradually decreases, so that at a certain instant, under the influence of pressure in the sublimation gap,
the liquid breaks the ice and freezes, reaching the external boundary of the porous element. Later on, the process is
repeated.

It should be noted that in [18] other hypotheses for moisture motion, coexistence of three phases in a porous
body, and cyclicity of the process of sublimation cooling are also discussed. In particular, it is argued that the forma-
tion of finely crystalline ice, the destruction of it near the walls of the porous-body skeleton (in the region of energy
supply), and the ejection (break) of a liquid near the skeleton walls under the influence of the pressure gradient occur.
Furthermore, as has been shown in [20], nonfreezing thin liquid fillers between the ice and the solid hydrophilic sub-
strate are preserved under the influence of surface forces at a temperature below the triple point, and the thermocrys-
tallization mass flux also occurs in the porous body in the presence of the temperature gradient.

Formulation of the Problem. We consider a porous material representing a porous cylinder of nickel (Fig.
1). A liquid is fed to the sublimation gap (0 < r < L) under pressure; then it moves under the influence of filtration and
capillary pressures through the internal boundary r = L of the porous element to the external surface of the cylinder,
which is in contact with vacuum. As a result of the evaporation of the liquid and the radiative removal of heat, the
porous element is cooled and the liquid freezes, forming an ice filler in the pores.

Based on the assumption of the identity of the boundary conditions along the cylinder length, we will con-
sider the process of heat and mass transfer in the porous cylinder to be one-dimensional. A heat flux is supplied to
the internal surface r = L, which, passing through the porous wall filled with liquid and ice, is partially consumed by
melting and sublimation (evaporation) and in part is removed from the surface of the material to vacuum by radiation.
Thus, following the overall picture of the heat and mass transfer process which is presented in the Introduction, we
consider that three phases and the ice–vapor and ice–liquid phase transformations whose boundaries r = ξ1(τ) and r =
ξ2(τ) are in motion, coexist in the porous element.

Let us consider a system of differential equations describing a problem of the Stefan type with two fronts of
phase transitions. We also take into account that the law of conservation of mass holds, i.e., the quantity of the liquid
supplied to the system is equal to the vapor flux removed to vacuum.

Then we have
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The boundary conditions are as follows:
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o
C) , (8)

Fig. 1. Geometric scheme of the problem: 1, 2, and 3 correspond to the steam,
ice, and water zones in the porous element.
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Relations (4) and (5) are the Stefan conditions for the ice–steam phase transition (ice sublimation); the tem-
perature on the phase surface is unknown and must be determined in the course of solution of the problem. Expres-
sions (7) and (8) are the Stefan conditions for the water–ice phase transition (crystallization, melting); however, here
the temperature on the boundary of phase transition is known and is equal to Tph.

With the deepened front of sublimation r = ξ1(τ), we have heat removal from the external surface of the po-
rous material by radiation, which enables us to write the boundary condition at r = R as
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When the porous element is filled with liquid and the liquid evaporates from the surface, the boundary con-
dition has the following form:
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As has been noted above, the liquid evaporating from the surface is replaced by the liquid from the internal
layers of the porous element. This results in the freezing of water on the external surface of the material without the
deepening of the front inward. When water freezes, the sublimation of ice from the surface occurs and we can write
the following boundary condition:
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The initial conditions have the form

τ = 0 ,   ξ1 (0) = ξ2 (0) = 0 ,   T = 274 K . (11)

Let us dwell on boundary condition (6) in more detail. It replaces the equation of transfer of the vapor mass
in zone 1, relates the unknown temperature T∗  to the sublimation rate, and accounts for the presence of resistance to
vapor motion in deepening of the sublimation front. Expression (6) has been obtained as a result of solution of the
kinetic equation of vapor transfer in the free-molecular regime in a capillary of finite length in evaporation of the filler
in it [4]. As has been shown in [4], this expression can be used with good accuracy for rarefactions from the free-mo-
lecular regime to the flow at Kn C 1 (here Kn C 2λ∗  ⁄ d∗ ). Furthermore, with the above flow regimes, expression (6)
can also be used for the case of the considered globular structure of the porous element where d is interpreted as the
diameter of a particle of a porous body. Such a conclusion can be drawn, in particular, based on a comparison of (6)
with the analogous formula for the vapor flux from a porous layer of globular structure in the free-molecular regime
(true, for a highly porous body) [4]:

jv = 
ερv (T∗ ) √ kT∗
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Consequently, boundary-value problem (1)–(11) is a closed problem describing the temperature distributions in
the three zones with account for the phase transitions and the presence of moving interphases. The problem is substan-
tially nonlinear, which is why it is solved by a numerical method.
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Procedure of Numerical Solution. The equations have been approximated following the control-volume
method. The possible nonregularity of the spatial grid and variability of the thermophysical characteristics have been
taken into account. Then the common difference equation for the three zones is written as
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The coefficients ceff and λeffi are calculated with account for the distinctive features of the zones and the
presence of the interphases. For this purpose we have created special procedures which enable us to carry out the
given operations. As is clear from formula (12), the difference scheme is explicit. The final expression for calculation
of the temperature has the form
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The temperature at points of the porous element is calculated according to Eq. (13). We would like to note
that the effect of volume increase in the water–ice phase transition was not taken into account for simplicity of the
calculations.

It is necessary to know the numerical values of ρv in the equations considered. For this purpose we use the
equation of state of an ideal gas. Here we assume that the vapor is in dynamic equilibrium with the solid or liquid
phase. The saturated-vapor pressure as a function of the temperature has been found from the Clausius–Clapeyron for-
mula
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Based on formula (14), we have obtained the expression for the vapor which is in equilibrium with ice
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and for the vapor which is in equilibrium with water we have

Pv = 872 exp 

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T




 . (16)

These formulas adequately describe the steam pressure in the temperature range of interest and their errors do
not exceed 9%.

Based on Eqs. (4) and (6) we have composed the difference scheme for numerical calculations
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Let us find Ti, solving (17) by the iteration method. Then we determine the mass of sublimated ice from the
formula for jv, which enables us to calculate the location and velocity of the sublimation front. To do this we have
composed the corresponding procedures and algorithms of such a calculation. When the entire ice in the ith element
is sublimated, the sublimation front moves inward. The reverse motion of the sublimation front (unlike the crystal-
lization front) is absent.

From Eq. (7) we have obtained the following difference relation:
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When the entire liquid in the ith element transforms to ice, we carry out a change of the state of aggregation
of the element and shift the zone of phase transition deep into the material. The analogous operations are also per-
formed with the front motion to the external surface in melting of ice.

We obtain from (18) the mass of liquid transformed into ice and vice versa. Based on this, we calculate the
location and velocity of the phase front. We have composed the procedure and algorithms of such a calculation which
enable us to calculate both the crystallization of water and the melting of ice depending on the cooling or heating of
the liquid.

Using expressions (10) and the control-volume method, we have written the difference equation on the exter-
nal boundary of the material which allows us to account for the cooling of the material by radiation:
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If there is evaporation of the liquid from the surface, on the basis of Eq. (10′′ ) we have
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The analogous equation is obtained in the case where ice is sublimated from the surface r = R (but Q3 should be sub-
stituted for Q1).

For the internal surface of the cylinder we obtain the following difference relation, using Eq. (9) and the con-
trol-volume method:
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where
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a = ceff
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Discussion of the Results Obtained. Based on the elaborated procedure, we have created algorithms and pro-
grams allowing us to calculate the temperature fields in the porous element, the heat fluxes lost to vacuum by a wick,
and the state of aggregation of water in the material. Varying the heat regimes and the thermophysical characteristics
of the porous element and its geometric parameters, we have carried out computational experiments on determination
of the quantities investigated.

In the calculations, we have used the following data; ε = 0.4, ρs = 8800 kg/m3, ρw = 1000 kg/m3, ρice = 917
kg/m3, cs = 460 J/(kg⋅K), cice = 2100 J/(kg⋅K), cw = 4200 J/(kg⋅K), λs = 58 W/(m⋅K), λice = 2.21 W/(m⋅K), and λw
= 0.55 W/(m⋅K); λeff1 = 5 W/(m⋅K) is the effective thermal conductivity of porous nickel filled with vapor [18],
λeff2 = 25 W/(m⋅K) is the same with ice filling [18], and λeff3 = 10 W/(m⋅K) is the same with water filling, k =
1.38⋅10−23 J/K, m = 2.99⋅10−23 kg, R∗  = 461.9 J/(kg⋅K), Q1 = 2.83⋅106 J/kg, Q2 = 3.34⋅105 J/kg, Q3 = 2.5⋅106 J/kg,
d = 35⋅10−6 m, L = 0.0475 m, D = 0.003 m, ε∗  = 0.3, σ = 5.67⋅10−8 W/(m2⋅K4), H = 0.18 m, and q = 1523–15,230
W/m2 (which corresponds to a heat power of Q

__
 = 100–1000 W).

Figure 2 shows a representative temperature distribution along the depth of the porous element at different in-
stants of time. Three zones separated by two kink points are seen. These points are the surfaces of the ice–steam and
water–ice phase transitions. The first zone (see Fig. 1) is a porous structure filled with steam. The second zone is
filled with ice and the third one with water.

On the basis of numerical experiments, we established the following representative picture of the process of
cooling. At the initial instant, it is assumed that the porous plate is totally filled with water and the liquid evaporates
from its surface into vacuum. It is considered that as the moisture evaporates it has a chance to come to the surface
from the internal layers of the element due to capillary forces and to the pressure drop maintained in the system. As
a result, the surface will be cooled very intensely and at a certain instant the upper layer will freeze, having reached
0oC. Water turns out to be separated from vacuum by an ice layer. From this instant, ice sublimation begins and the
sublimation front gradually bites more deeply into the porous element. Simultaneously, a front of the crystallization of
the liquid into ice is formed. This front, as shown by numerical calculations, due to sublimation cooling will move
faster than the sublimation front. The ice filler will increase. This continues as long as the flux of the arriving heat is
smaller than the heat flux removed to vacuum. However the resistance of the porous material increases as a result of
the deepening of the sublimation front, which leads to a decrease in the sublimation intensity. At a certain instant, the

Fig. 2. Temperature distribution over the thickness of the porous element for
different instants of time, including crystallization on the water–ice front, at
Q
__

 = 250 W: 1) τ = 0.1, 2) 0.5, 3) 1, 4) 5, 5) 10, 6) 15, 7) 20, and 8) 38 sec.
T, oC; r, mm.
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heat fluxes supplied to the element and removed to vacuum become equal. At this instant, the crystallization front is
brought to rest, the ice filler ceases to grow, and a temporary equilibrium is established. However, the sublimation
front continues to deepen, which results in a further decrease in the intensity of heat removal and in the beginning of
the reverse process of melting of the ice filler. The melting front begins to rise to the external surface of the porous
structure. As a result, the ice filler decreases due to two factors: ice melting from below and its sublimation from
above. This continues until the ice filler disappears completely. However, in actual practice, the filler can be forced
through by filtration pressure after reaching a certain critical dimension rather than disappear completely. Thereafter the
liquid begins to rise quickly to the surface of the porous element. From the instant the upper boundary is reached, the
entire cycle of sublimation cooling described starts again.

Figure 3a shows the dependence of the duration of the cycle τc on the heat load Q
__

 delivered to the internal
surface of the porous element for different d. The cycle duration decreases drastically with increase in the thermal
power from 100 to 150 W. The reason is that the rise of the heat load decreases the depth of freezing, bringing it
closer to the external boundary. The difference between cycle durations for dissimilar d decreases, too. It is clear from
Fig. 3a that the cycle time, especially at small heat loads, depends on the effective diameter of the pores. The cycle
duration increases with d. We have τ = 628 sec for an effective diameter of the pores of d = 70 µm, τ = 325 sec for
d = 35 µm, and τ = 73 sec for d = 7 µm when Q

__
 = 100 W.

With increase in the heat load, the depth of freezing decreases and the ice filler is closer to the external sur-
face, which leads to a decrease in both the cycle duration and the differences in the values of τc between the porous

elements with dissimilar effective diameters, since the influence of the term 
1

1 + ξ1
 ⁄ d

 in the equation for jv on the re-

moved heat flux decreases due to the decrease in ξ1 in formula (6).

Analysis of the dependences of the cycle duration and the depth of freezing on the heat load Q
__

 for the porous
elements with different thermal conductivities has shown that at small Q

__
 these values are independent, in practice, of

Fig. 3. Dependence of the cycle duration (a), the depth of freezing (b), and the
depth of sublimation front (c) on the heat load for different effective diameters
of the pores: 1) d = 70, 2) 35, and 3) 7 µm. τc, sec; Q

__
, W; rice, mm; rsub,

mm.
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the effective thermal conductivity. Some influence, as the calculations demonstrate, begins to manifest itself only at
large Q

__
. Therefore, a change in the thermophysical characteristics of the material in the presence of phase transitions

weakly affects the process of sublimation cooling. This is also supported by the data of [19].
It has been shown that the largest differences in τc upon change in the thickness of the porous element mani-

fest themselves at small heat loads. With increase in the loads these differences decrease and, beginning with a certain
value of Q

__
, remain nearly constant. Thus, the thickness of the porous element exerts the largest influence on τc for

small heat fluxes. The calculations show that a decrease in the thickness of the porous element leads to a reduction in
the cycle duration, which is to be expected. Furthermore, τc increases with porosity.

The dependences of the depth of freezing and the depth of the sublimation front on the heat load for different
effective diameters of the pores d are presented in Fig. 3b and c. It is seen from Fig. 3b that the depth of freezing
increases with the effective diameter, and complete freezing of the liquid in the sample is possible even with small
Q
__

, which would be prevented. The maximum thickness of the ice layer increases with the depth of freezing. When the
heat load increases, the depth of freezing decreases for all d. It is clear from Fig. 3b and c that for d = 7 µm the
depths of freezing and sublimation are independent, in practice, of the heat load.

It also follows from the calculations that at large Q
__

 the fronts of phase transitions are very close to each other
(i.e., the thickness of the ice filler is small) and to the upper boundary r = R, and at small Q

__
 the depth of freezing

increases with decrease in the dimension of the porous element.

CONCLUSIONS

1. The mathematical model of heat and mass transfer in a porous cylindrical layer with two phase transitions
— ice–steam (ice sublimation in vacuum) and water–ice (crystallization or melting) with moving interphases has been
developed and realized.

2. As a result of the realization of the mathematical model proposed, the cyclic character of heat and mass
transfer in the porous cylindrical element has been revealed, which corresponds to the conclusions of [19]. The cycle
duration τc with small heat loads Q

__
 substantially depends on the thickness of the porous element, the pore diameter,

and the porosity, and with increase in Q
__

 the time τc is reduced and its dependence on the indicated parameters be-
comes weak.

3. According to the calculations (see, for example, Fig. 2), the temperature in the porous element in the proc-
ess of sublimation cooling is close to 0oC, which correlates well with the data of [19].

4. Complete freezing of the liquid in the porous element is possible with small heat loads Q
__

 (or with low val-
ues of the heat-flux density q = Q

__
 ⁄ S) and large diameters of the pores.

NOTATION

T, temperature, K; ε, porosity; ε∗ , emissivity factor of nickel; ρ, density, kg/m3; c, specific heat, J/(kg⋅K); λ,
thermal conductivity, W/(m⋅K); k, Boltzmann constant, J/K; m, mass of a water molecule, kg; σ, Stefan–Boltzmann
constant, W/(m2⋅K4); d, effective diameter of the pores, m; Q1, sublimation heat, J/kg; Q2, melting heat of ice, J/kg;
Q3, heat of evaporation of water, J/kg; R∗ , gas constant of the steam, J/(kg⋅K); R, external radius of the porous ele-
ment, m; L, radius of the internal surface of the hollow cylinder, m; D, thickness of the porous wall, m; T∗ , tempera-
ture on the boundary of the ice–steam phase transition, K; ρv(T∗ ), density of the saturated vapor at T∗ , kg/m3; H,
cylinder length, m; Kn, Knudsen number; q, heat-flux density, W/m2; r, space coordinate along the cylinder radius, m;
Q, heat of phase transition, J/kg; P, vapor pressure, Pa; P0, pressure of the saturated vapor at T0, Pa; ξ1, coordinate
of the sublimation front, m; ξ2, coordinate of the crystallization (melting) front, m; jv, vapor flux, kg/(m2⋅sec); τ, time,
sec; d∗ , capillary diameter, m; λ∗ , mean free path of molecules at P = Pv(T∗ ), m; ∆τ, time step, sec; h, coordinate
step, m; ∆M, increment in the mass as a result of melting or crystallization, kg; Q

__
, heat load, W; S, surface area of

the body. Subscripts: s, skeleton; w, water; ice, ice; v, vapor; c, cycle; ph, phase; eff, effective; sub, sublimation; 1,
vapor + porous body zone; 2, ice + porous body zone; 3, water + porous body zone; i, number of the step along the
coordinate r; k, number of the time step; 0, certain initial value.
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